Searching for an essay?

Browse the database of more than 4500 essays donated by our community members!

Chemistry Article Summary

Gold’s magic number
20 August 2008

A new gold catalyst developed by UK chemists can catalyze hydrocarbon oxidation, using O2 as the only oxidant. But catalyst particle size is critical – above 2nm diameter, the catalyst loses all activity.

Writing service




[Rated 96/100]

Prices start at $12
Min. deadline 6 hours
Writers: ESL
Refund: Yes

Payment methods: VISA, MasterCard, American Express


[Rated 94/100]

Prices start at $11
Min. deadline 3 hours
Writers: ESL, ENL
Refund: Yes

Payment methods: VISA, MasterCard, American Express, Discover


[Rated 91/100]

Prices start at $12
Min. deadline 3 hours
Writers: ESL, ENL
Refund: Yes

Payment methods: VISA, MasterCard, JCB, Discover

The catalyst was developed by Richard Lambert and colleagues at the University of Cambridge, who used styrene oxidation as a test reaction. The team found that the reaction didn’t require any additional oxidants such as peroxides. Oxygen molecules adsorbed to the gold particles and then dissociated to give single oxygen atoms that initiated the styrene oxidation. ‘Styrene is a very good test molecule which can be handled easily,’ says Marc Armbrüster, who also works at the University of Cambridge and collaborates with the group. Oxygenated hydrocarbons are also valuable intermediates for the industry.

‘The prospect of selective oxidation using molecular oxygen without the addition of additives over a new catalyst is exciting,’ comments Jeroen van Bokhoven, from the Institute for Chemical and Bioengineering at ETH Zurich, Switzerland. ‘There seems to be space for trying the catalyst out on more systems and for improving the selectivity,’ van Bokhoven adds.
The catalyst consists of 55-atom gold clusters, which form nanometer-sized particles on inert supports. The Au55 particles are so-called ‘magic number’ clusters that contain exactly the right number of atoms for very stable geometries, making them ideally suited to catalysis.

See also  Philisophical Examinaiton of Plato's Dialogues

However, the particle size of the catalyst is critical. While 1.4nm diameter particles were effective and robust catalysts, particles 2nm or larger have no catalytic activity. The researchers used x-ray photoelectron spectroscopy to show that the nano-clusters have a different electronic structure to bulk gold. ‘As the particles become smaller, their electronic structure changes significantly,’ explains Armbrüster. The organic reactant only weakly adsorbs to the catalyst, so that its electronic structure is not perturbed.

‘We don’t know exactly how the catalyst works but we really want to understand what is going on,’ says Armbrüster. ‘We think that quantum chemistry might be the easiest way to find out what is happening,’ he adds. ‘We also need to do further lab work, for example, to discover the catalyst’s lifetime and to establish the influence of different loadings of the catalyst.’

The research team hopes that its gold clusters will provide a route to the synthesis of robust gold catalysts with practical applications for synthetic chemistry. ‘We are quite some way off an industrial catalyst, but we see no barrier to gold clusters as an eventual route to gold catalysts of real industrial relevance,’ says Mark Turner, who worked with Lambert on the project. ‘What’s more, they offer the opportunity of carrying out industrially important epoxidation reactions with true atom economy – using only oxygen.’
Emma Davies

Summary of: Gold’s magic number

Using styrene oxidization, a process that combines styrene (a colourless, water-insoluble liquid) with oxygen, as a test reaction, chemists in the United Kingdom were able to develop a new gold catalyst that uses O2 as the only Oxidant. Developing a new gold catalyst is important because the gold particles contain exactly the correct number of atoms needed for very stable surfaces- the particles are even called ‘the magic number: 55 Atoms.

See also  Compare and Contrast Two Theories of Bystander Behaviour

The UK team will now be working to find out the lifespan of the catalyst and to figure out exactly how the catalysts work and they believe this will be easiest done through quantum chemistry.

How this article relates to my life

This article relates to my life because of things like petroleum refining; petroleum refining makes great use of catalysts in catalytic cracking, the breaking of long-chain hydrocarbons into smaller pieces. Also, the exhausts from burning fossil fuels are treated using catalysts; in automobiles, catalytic converters are used to break down some of the more harmful byproducts in the exhaust.

Cite this page

Choose cite format:
Chemistry Article Summary. (2021, Mar 16). Retrieved June 24, 2022, from